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Determinants .

Part 2 i Two applications

•
Recall the re¥E ( Laplace expansion)

N
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This motivates us to define the so- called

cofactormatrix-CK.li
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The same holds for CTA
.

Thus
, AE =EA = data

.
I =D A g%- = g%- A =D ,

i.e. A
"
= g÷ .

"the inverse is equal to the cofactordivided by the determinant ?

• You can regard this as the application of Cramer 's rule to
the problem
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•
Given Nx N problem

BE = o
,

we always have at least Ñ=o as a

solution .

• If detB =/ o
,

then I = o is the ¥y_ solution .

• If d☆B = 0
,

then there is an infiuiteuunber
ICES because the columns

of B are linearlydepeIt.
not enough constraints to force I :o)

non - vanishing !

*
This is useful when calculating the so-called eigenvectors
R of a matrix ( future video on this.P)=

Eigenvectors : montero vectors such that 7k /scalar) for which
II ME = it

it
eigenvectors eigenvalues

→How do we solve this problem? (find t & F)

(M - XI)J=o ⇒ i=o ??? Not the

solution we waft



To have i =/ o ,
it must be that

diet (M - HL) = a →
"

secular equation
"

Elfman.us the
allowed values of × .

For example ,

My; ;) → M - +11=4? ;)
ditch -414=+4-11--2 ¥ a

↳ quadratic eg . for × .

In


