Short Takes 331

Linear operators : Part 3

Theorem : If ker A = { 0 } then A is "one-to-one" (injective) and therefore the inverse operator exists.

Note Ao = 0 always; therefore, if A is injective then it must be RerA = [0] (converse property).

. Assume $kerk = \{ \vec{O} \}$ and k not injective. Then, $\exists \vec{v}_1, \vec{v}_2$ such that $\Rightarrow \overline{V}_1 - \overline{V}_2 = \overline{a} , i.e. \overline{V}_1 = \overline{V}_2$

Theorem: The inverse of a linear aperator is also a linear op.

 \rightarrow . By let $A\bar{x}=\bar{y} \Rightarrow A^{\bar{y}}=\bar{x}$ Then A(cx) = cAx = cy $\Rightarrow A'(c\overline{\gamma}) = c\overline{\chi} = cA'\overline{\gamma}$

these three vectors are not LI.

