Short Takes 331

Orthogonal functions & special polynomials

- Recall that given $X = \{1, \, x \, , \, x^2, \, \cdots \}$, which are LI,
- we may orthogonal ize (and optionally also normalize) these monomials using the Grain -Schmidt process. alize (and optionally
using the Gram-S
defined in our sp.
- For that purpose, we need in our space of functions to have a well -
- For example, $\bigoplus_{\alpha=1}^{\infty} (4, 9) = \int_{1}^{1} 4(x) dx dx$ $\int_{-1}^{1} f(x)g(x)dx$ or $(f, g) = \int_{-\infty}^{1} f(x)g(x) e^{-x^2}dx$
- or perhaps \bigcirc $(f,g) = \int f(x) g(x) e^{x^2} dx$, and so on. O
- $G(f,g)=$ Key point: the form of
the type of
Upon artho |
C
C
C the inner product will defermine
abynomials we end up with the type of polynomials we end up with
- . If we use (10), then Gram. Schmidt will produce the Legendre polynomials , whereas⑧ will produce the Hermite polynomials?

 $\frac{\lambda_{z1}}{\lambda}$
So for so good... but we also know $I_{\infty}(\lambda) = \sqrt{\frac{\pi}{\lambda}}$ Therefore, $-\frac{2}{3}\vec{\lambda}(\lambda) = -\sqrt{\pi}^{-1}(-\frac{1}{2})\lambda^{-3/2} = \frac{\sqrt{\pi}}{2}\cdot\lambda^{-3/2} \longrightarrow \frac{\sqrt{\pi}}{2} = I$

