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Orthogonal functions & special polynomials

Recall that given
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we may orthogonal ize (and optionally also normalize)
these monomials using the Grain - Schmidt process .

For that purpose , we
need inourspo.ee#fuuctooms

to have a well - definedEt .

For example ,
⑧@ (f. g) = !! fixgcxdx or (f. g) =/ Tflxigcxléxdx
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or perhaps
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④ (f. g) = f flight e-✗ dx ,
and so on
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the type of polynomials we end up with

• If we use ④ ,
then Grau - Schmidt will produce the

Legendre polynomials , whereas⑧ will produce the
Hermite polynomials ?

You too can come up
with your own inner product

and invent your own
"

You
"

polynomials ?

In a previous video we did the first 3 cases of⑨
Let's try⑧ I
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we'll need We know
•
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→ Feynman trick : -¥2141 = In

✗ = 1
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⇒ -2*11×4=4
✗= 1

So far so good . . . but we also know Elt) =fÉ
Therefore ,

_ zig = - ☒ f- 1) 5% = ¥ .

5%_ E- = -7✗→ 1
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• Taking more derivatives , we can access In for arbitrary n .

• By evaluating at different values of ,
we also get

other integrals for free , such as

of* e-2×2 dx = II. 2-%
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• Knowing these Gaussian integrals is essential in Physics ,
not just in generating orthogonal polynomials .

Going back to Wg . . .
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Continuing in this way , we generate the tlermitepoly-nm.is .
• These are important functions because they characterize the

quantum harmonic oscillator
.

y#éÉH(c.×)

• miner .se :?É¥¥¥:*
. am -1 .(f. g) = [

,
→-


